This document is confidential. This document and any information contained in it should not be copied, distributed, published or reproduced, in whole or in part, or disclosed to any other person. This document and any information contained in it shall remain the property of Yara International ASA and/or its affiliates (collectively “Yara”). No rights, including, but not limited to, intellectual property rights, in respect of this document are granted to any recipient.

Yara makes no express or implied warranty or representation concerning the accuracy or completeness of this document or the information contained in it and therefore any liability (including but not limited to direct, indirect or consequential loss or damage) is expressly disclaimed. This document does not purport to contain all of the information that may be required to evaluate any potential transaction and should not be relied on in connection with any potential transaction.

This document may contain forward-looking statements (including, but not limited to, information such as estimates, projections, plans and objectives). Such statements are neither historical facts nor assurances of future performance. Instead, they are based only on Yara’s current beliefs, expectations and assumptions regarding the future of its business, future plans and strategies, projections, anticipated events and trends, the economy and other future conditions. Because forward-looking statements relate to the future, they are subject to inherent uncertainties, risks and changes in circumstances that are difficult to predict and many of which are outside of Yara’s control. Yara’s actual results and financial condition may differ materially from those indicated in the forward-looking statements. Therefore, a recipient should not rely on any of these forward-looking statements.

Any forward-looking statement made by Yara in this document is based only on information currently available to Yara and speaks only as of the date on which it is made. Yara undertakes no obligation to publicly update any forward-looking statement, whether written or oral, that may be made from time to time, whether as a result of new information, future developments or otherwise.

©Yara International ASA. All rights reserved.
CAN-
A Proven Example of
A Consistently Safe AN-based Fertilizer
Farmers want fertilizers that are efficient and the most effective to use.

Manufacturers, Retailers and Distributors want to provide products that:
- Meet growers needs
- Promote Nutrient Use Efficiency & 4R Stewardship
- Are Safe and don’t require excessive special requirements & handling costs

Current Regulations do not encourage the use of proven safer AN-based Products.

Current regulations need a process to validate testing and a pathway to present acceptance of proven Safer Products.
**CAN- A Safe & Important Fertilizer**

- Calcium Ammonium Nitrate (CAN) is a unique, **safe** and **efficient** fertilizer.

- CAN is a globally accepted **non-hazardous** product.

- It is expressly designed as a **safe** form of nitrogen fertilizer with characteristics that make it incapable of accidental explosion in a fire scenario when following normal good handling procedures.

- CAN is a **homogeneous** mixture of co-granulated ammonium nitrate (AN) and carbonaceous material (ie. calcium carbonate)

- These inherent **safety and agronomic advantages** have resulted in many countries (i.e. Germany, The Netherlands, Spain and Ireland) **providing a more favorable regulatory treatment of CAN.**
CAN – Market Summary

Global Production - 2014

- Total Annual Volume - 15.2 Million Tons

US Market Distribution Est.

- 50% Southeast
- 26% MidSouth
- 19% West
- 6% Other

US Product Sources

- No Current US Production
- Primary Import Sources
  - Netherlands
  - Germany
  - Bulgaria
  - Russia
  - China

Source: Yara Est.
Why is CAN important to the Farmer?

CAN provides superior agronomical results over alternative fertilizer products.

YaraBela™ is Yara’s brand for CAN

CAN combines all the agronomic advantages of AN with the safety advantages of carbonaceous material. This specific manufacturing formulation was created for maximum safety effectiveness and not for agronomic benefit, although secondary nutrients such as calcium (Ca) and magnesium (Mg) may be present but are not water soluble and immediately available for plant uptake.
What are additional advantages of CAN?

- CAN is a more efficient form of nitrogen for certain plants, making it better for the environment.
- CAN has net advantages in terms of carbon footprint and global warming effect.
- CAN combines superior agronomic and environmental advantages along with high safety features together in one product.

YaraBela™ is Yara’s brand for CAN
Increased Scrutiny puts added pressure to assure we are doing things right in our business.
Focus and Priorities are Ever Changing

- Safety
- Security / Terrorism
- Water Quality
- Nutrient Runoff
- GMO’s
- Food Safety
- Water Scarcity
Evolution of Security Regulations

1983 – One World Trade NYC
DOT: Regulations for Transportation of 5.1 Oxidizers

1995 – Oklahoma City
Industry: Know Your Customer Campaign

9-11-2001
Industry: America’s Security Begins With You
DHS: 2007 CFATS
DHS: 11-07 Appendix A

2011 – Oslo
DHS: 2011 NPRM for Secure Handling of Ammonium Nitrate
Yara & Industry: Leadership Response and Lobbying Efforts

Afghanistan
DOD: JIEDDO
Yara / Industry & DOD - IED’s - CAN 27 Safety Alternatives
Dept of State

2013 – West, TX
EO on Chemical Safety
GAO Report
Updated Regulations??

2016 – …..
OSHA – New Safe Handling Guidance
CSB Report
DHS- CFATS Expansion
COI Review – NAS Study
Complexity or Clarity?

Necessary? - Yes

Consistent? - No

Clear? – No

Result? - Confusion
A Successful Balance

- Company/Industry
- Sustainability
- Products
- Safety/Security
- Employees
- Communities
- Customers
Safety Features of CAN

• **Fire Reaction is Reduced**
  - CAN will not acidify due to the calcium carbonate (lime) balancing the pH.
  - Decomposition kinetics are limited & slowed –
    - 5 times lower than AN at extreme temperatures (320degC)
    - 29 times lower than AN at high temperatures (260degC)

• **Explosion Reaction Potential is Reduced**
  - It is a mixture of compatible materials
  - Chemical Reactions further limit any explosion effect
    - Addition of the calcium carbonate neutralizes the acidity of molten AN and dilutes the AN content
    - The neutralization effect is stronger than simple dilution of the AN. It is multiplied.
    - Calcium Carbonate can decompose via an endothermic reaction into CaO + CO$_2$ thereby acting against any explosion
CAN - Consistent Product Composition and Designation

• **Composition and Grade**
  - CAN is a solid fertilizer, normally in granular or prill form.
  - Its N content is typically made up of between 75 and 80 percent AN, which translates to a range of between 26 and 28 percent nitrogen by weight with the average formation being 27 percent N.
  - CAN also may contain additives, such as magnesium nitrate or aluminum sulfate to enhance the physical quality of the product, in particular to improve its hardness and storage properties.

• **Global Standard Product Designation**
  - For many years the European Community has successfully used a specific product designation for CAN. This standard assures product consistency from a monitoring standpoint.
    - According to the REGULATION (EC) No 2003/2003 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 October 2003 relating to fertilizers, (EC2003/2003), the designation ‘calcium ammonium nitrate’ is exclusively reserved for a fertilizer containing only calcium carbonate (i.e. limestone) and/or magnesium carbonate and calcium carbonate (i.e. dolomite) in addition to AN. The minimum content of these carbonates must be 20 percent and their purity level at least 90 percent.

The addition of **carbonaceous material** at a minimum of 20% means that the AN content can be up to 80% for CAN and still be rendered safe as recognized by UN test protocol.
Calcium Ammonium Nitrate (CAN) Chemical Composition

<table>
<thead>
<tr>
<th>%</th>
<th>Fertilizer grade AN 34.5%N</th>
<th>Fertilizer grade AN 33.5%N</th>
<th>Calcium Ammonium Nitrate 27%N</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
</tr>
</tbody>
</table>

80 % AN: maximum allowed AN content for CAN

Additives (*)
Filler (**)  
AN content (***)
Calcium Ammonium Nitrate (CAN) 
Chemical Composition

• Additives (*):
  • It is a common practice in the fertilizer industry to incorporate additives (up to 5%) in order to improve the quality and safety features of the product.

• Filler (**)
  • The designation ‘calcium ammonium nitrate’ is exclusively reserved for a fertiliser containing only calcium carbonate (for instance limestone) and/or magnesium carbonate and calcium carbonate (for instance dolomite) in addition to ammonium nitrate. The minimum content of these carbonates must be 20 % (and/or 80% max of AN, difference between UN and Seveso) and their purity level at least 90 %

• AN content (***)
  • The only nitrogen source in CAN is Ammonium Nitrate (AN). The maximum allowed AN content is 80%. Depending on their nature, additives may contribute to a very minor fraction of the total nitrogen.
  • Nitrogen is expressed as nitric and ammoniacal nitrogen, each of these two forms of nitrogen accounting for about half the nitrogen present.
Calcium Ammonium Nitrate (CAN)
How is CAN produced?

- Calcium Ammonium Nitrate Production:
  - Homogeneous mixture of co-granulated Ammonium Nitrate (AN) and carbonaceous material
  - Carbonaceous material must consist of only calcium carbonate, such as limestone and/or calcium carbonate and magnesium carbonate such as for instance dolomite
  - The carbonaceous material is added to the AN melt to form a slurry that is sprayed in the granulator or prilled in a prilling tower. In some processes AN and carbonaceous material are added separately to the granulator and co-granulated
Calcium Ammonium Nitrate (CAN) Global Safety Recognition

- CAN is a reference base straight N fertilizer, being produced worldwide at an annual volume of more than 14 million tons.
- CAN shows excellent historical safety records: There are no reported incidents of any accidental explosion of CAN resulting from a warehouse fire.
- Current international transport and storage legislation reflect this safety feature:
  - Transport legislation:
    - According to UN Model regulations on The Transport of Dangerous Goods (so called Orange Book), CAN is not classified as hazardous material. This is also adopted by specific ADR/IMDG/IMSBC legislation
  - Storage legislation:
CAN - Global Safety Recognition
A Test Proven Classification & Regulatory Framework

• Handling & Storage Safety Advantages –
  
  – Non Hazardous Status – UN Regulations
    • UN Model Regulations on the Transport of Dangerous Goods defines CAN as follows: “any mixture of up to 80 percent AN by weight combining calcium carbonate and/or dolomite, and not more than 0.4% total combustible/organic material calculated as carbon, is not classified as hazardous.”

  – Non Explosive Status – UN Hazard & Division Class 1
    • CAN does not exhibit explosive properties of a UN Hazard Class and Division Class 1 explosive when tested in accordance with relevant UN explosion testing protocols. See examples in White Paper appendix 2 and 3 from TNO (the Netherlands, https://www.tno.nl/).

  – Non Oxidizer – UN/DOT Criteria Class 5.1
    • CAN is not considered an oxidizer as defined by UN/DOT Criteria. This is demonstrated in tests conducted by Stresau Laboratory in the USA (http://www.stresau.com/) using Yara’s formulation of CAN; see White Paper appendix 4.
Relevance of CAN Safety
Comparison of AN and CAN in a fire scenario

- **AN involved in a fire:**
  - When exposed to heat, ammonium nitrate:
    - Will start melting at 337° Fahrenheit (melting is an endothermic process)
    - Being a good insulator, the top layer of a fertilizer heap will melt and flow away, whilst product inside the heap will remain at constant temperature
  - When ammonium nitrate is in the molten state; it starts decomposing according to different reactions:
    - Starting with an endothermic dissociation reaction into its original components NH₃ and HNO₃; melt will acidify
    - At higher temperatures different irreversible and exothermic decomposition reactions occur (catalysed by acidic condition) with generation of several non-condensable gases such as NO, NO₂, N₂:

When AN is confined, the exothermic reactions will create increased pressure until potential blow up
Relevance of CAN Safety
Comparison of AN and CAN in a fire scenario

- **CAN involved in a fire:**
  - CAN differs drastically from AN when involved in a fire: different reactions occur and kinetics are much slower
  - Molten CAN and pH:
    - Decomposition reactions of ammonium nitrate are catalysed by acidity (and hampered under alkaline pH)
    - CAN melt will not easily acidify due to neutralisation reactions with the present carbonaceous filler:
      \[
      \text{NH}_4\text{NO}_3 \rightleftharpoons \text{NH}_3 + \text{HNO}_3 \\
      \text{CaCO}_3 + 2 \text{HNO}_3 \rightarrow \text{Ca(NO}_3)_2 + \text{CO}_2 + \text{H}_2\text{O}
      \]
  - Kinetic of the decomposition:
    - Acid neutralisation by carbonaceous product is endothermic and evaporation of the generated water will temperate the fire
    - Certain compounds such as chloride act as a catalyst. This catalytic process requires acidity, while CAN melt is pH-buffered

“Kinetics of CAN decomposition are much lower than AN decomposition”
Other reactions occurring when CAN is involved in a fire:

- In case of CAN, other compounds are generated in the molten state such as calcium and/or magnesium nitrate.
- When temperature further rises to about 350-600°C, these products will decompose into NOx and CaO and MgO.
- These reactions are endothermic and will absorb heat from the fire.
- Moreover, as CaO and MgO are generated, it will neutralize the new molten ammonium nitrate, keeping the pH alkaline and as such limiting the kinetic of the decomposition of ammonium nitrate.
- Reactions:
  \[ \text{CaO} + 2 \text{HNO}_3 \rightarrow \text{Ca(NO}_3)_2 + \text{H}_2\text{O} \]
  \[ \text{MgO} + 2 \text{HNO}_3 \rightarrow \text{Mg(NO}_3)_2 + \text{H}_2\text{O} \]

While CAN is inherently safer to use & store than AN, it should not be considered completely risk free and safety ignored. Some practical remarks:

- If CAN is trapped in a confined zone (such as a pipe or vessel) while exposed to heat, pressure build up can occur by the formation of gases such as CO2 leading to possible destruction of the pipe or vessel.
- When in contact with other chemicals that are incompatible to ammonium nitrate (such as fuels); some other reactions will occur in competition to the neutralization of ammonium nitrate and its related positive pH-effect.
- It is evident that, despite inherent safety features of CAN, best practices for storage and handling just like for any other nitrate containing fertilizer must be respected.
**Relevance of CAN Safety**  
**Comparison of AN and CAN in a fire scenario**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>If a pile of AN in bulk</th>
<th>CAN pile</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 degC</td>
<td>AN melts, start acidifying (NH3 loss)</td>
<td>AN melts and carbonates start to react, pH remains constant and alkaline</td>
</tr>
</tbody>
</table>
| 170-350 degC| further acidification, endothermic dissociation of AN  
evaporation of NH3(g) and part of HNO3  
exothermic formation of N2O, NOx and N2;  
Acid and T accelerate the decomposition | formation of Ca(NO3)2 and Mg(NO3)2;  
pH is buffered thus low kinetic of AN decomposition (N2O, NOx, N2)  
pH remains buffered til all carbonates are consumed |
| 350-600 degC| nothing left, no AN any more | Ca(NO3)2 and Mg(NO3)2 decompose into CaO+MgO (endothermic reaction),  
regenerating alkaline compounds that may act as pH buffer,  
if getting in contact with new molten AN flowing in the same area during the fire. |
Relevance of CAN Safety
Research Proves Safety is Enhanced

- **Chemical Reactions Limiting any Explosion Effect:**
  - CAN is fundamentally a mixture of compatible materials.
  - The carbonaceous materials not only neutralize the acidity of the molten AN, it also dilutes the AN content.
  - Carbonaceous filler brings stronger positive effect than only dilution of the ammonium nitrate when compared to other inert material such as sand (ref. to Clancey report).
  - Calcium carbonate can decompose via an endothermic reaction, hence acting against explosion:
    \[
    \text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2
    \]
  - The positive effect is quite significant and opposite of the reaction when compared to the addition of other products or materials such as AS (Ammonium Sulfate). Here the Ammonia produced can act as fuel and enhance is explosive power. (See Medard & Kiiski)
    \[
    \begin{align*}
    2 \text{NH}_4\text{NO}_3 + (\text{NH}_4)_2\text{SO}_4 & \rightarrow \text{SO}_2 + 8 \text{H}_2\text{O} + 3 \text{N}_2 \\
    3 \text{NH}_4\text{NO}_3 + (\text{NH}_4)_2\text{SO}_4 & \rightarrow \text{SO}_3 + 10 \text{H}_2\text{O} + 4 \text{N}_2
    \end{align*}
    \]
  - Large Scale Tests (up to 28 tons) performed by TNO evaluating the potential for detonation from a strong projectile which is generated by a primary explosion confirmed that no detonation occurred with CAN; however it was possible to create an explosion of FGAN by using a very and close to ideal conditions.
Current Regulatory Controls Outside North America Compliment CAN Safety Designations

- **“Seveso-Directive” on the control of major-accident hazards involving dangerous substances:**
  - European legislation (Directive 2012/18/EU) is excluding CAN from dangerous substances

- **Transport Regulations**
  - According to the UN transport classification of ammonium nitrate based fertilizers, CAN is considered as a non-dangerous good.
  - Universal Codification – Globally Harmonized System – also recognizes 80% threshold as non-hazardous

- **Storage Regulations**
  - European storage regulation:
    - Storage regulations are national matter and differ from country to country
    - Germany allows wood for structures and separation walls for storage of CAN (TRGS 511)
    - AN Regulations do not apply to CAN or products with a N content of 28% or less (implied 80% threshold)
Current Regulatory Controls Outside North America Compliment CAN Safety Designations

• Storage Regulations, (cont.)
  • AN Regulations do not apply to CAN or products with a N content of 28% or less (implied 80% threshold)
  • Best Management Practices (BMP)
    • The majority of these regulations clearly outline that CAN may be stored and handled in a manner consistent with best management practices.
    • Risks of FGAN versus CAN are different; therefore, all requirements in effect for AN storage are not required for CAN storage.
    • No specific reference to sprinkler systems in the requirements for fire prevention, but rather a strong focus on the need to have access to a sufficient water supply
    • Use of BMPs is recommended to avoid contaminants that could react negatively
  • Wooden bins
    • Allowed in Germany – the most widely used market
    • In some countries guidance stipulates avoiding direct contact with wood

Typical CAN storage facility in Germany
US Regulations Already Recognize CAN Safety

- **Transport Regulations - 49 CFR 172.102**
  - **US DOT** regulations follow UN standards & the Globally Harmonized System recognizing CAN as a non-hazardous, non-dangerous product
  - **CAN -Special Provision 150:**
    - This description may be used only for uniform mixtures of fertilizers containing ammonium nitrate as the main ingredient within the following composition limits:
      - Less than 90% but more than 70% ammonium nitrate with other inorganic materials, or more than 80% but less than 90% ammonium nitrate mixed with calcium carbonate and/or dolomite and/or mineral calcium sulfate, and not more than 0.4% total combustible, organic material calculated as carbon

- **Storage Regulations**
  - CAN has not historically been included in the enforcement of OSHA 1910.109(i).
  - Since EO 13650 was issued, this enforcement approach has changed.
  - The CSB in its’ final report of the West Fertilizer incident indicated that CAN should be reviewed and considered as a safer formulation of FGAN.
Conclusion

- **CAN is a globally recognized safe nitrogen fertilizer** created specifically for the purpose of preventing accidental detonation.
  - The addition of carbonaceous material at a minimum of 20% means that the AN content can be up to 80% for CAN and still be rendered safe as recognized by UN test protocol.
  - A uniform product designation creates consistency of product and enhances monitoring capacity

- **CAN has a strong safety record**
  - No historical reports of accidental CAN explosion - has a 90+ year history of safe handling
  - Testing and research proves CAN does not detonate using same standardized test protocol as for AN

- **CAN is globally recognized as a non-hazardous good and with non-oxidizer status**
  - Supported by research & scientific testing review
  - Supported by regulatory review

- **CAN and AN testing show the appearance of differences in their chemical behavior and there is evidence of differential treatment under regulations in other jurisdictions.**
  - CAN should have different safety handling and storage standards than AN that are consistent with those around the globe.
  - Consistency and clarity is necessary throughout the regulatory community
Choosing a Safer Future
Navigating the Changing Landscape

Reaction ➔ Responsibility ➔ Leadership
What is Safe by Choice

• It is a framework to develop a Safety Culture that reduces exposure to injury

• Where we all:
  – Share the responsibility for safety
  – Taking care of each other
  – As well as ourselves

• This development has to deliver a sustainable improvement

• Achieve a higher level of quality and consistency in all of us applying our procedures and tools
Circumstance or Choice?

Reaction → Responsibility → Leadership
Choosing to Shape the Future through Responsible Leadership

Moving From Reaction

To Leadership Responsibility
Responsible Leadership for the Future

Securing a Future for our Products

Governmental Affairs

- Maintain focus on Legislative and Regulatory advancements surrounding AN and other fertilizer products.
  - Seek governmental support for industry programs focusing on improved security and safety compliance while assuring continued and unrestricted grower access to all products.
  - Assure that regulations established for security purposes are farm friendly and consistently applied for all nitrogen products throughout the industry.

Public Awareness

- Promote Outreach and Education to position the safety, security and benefits of Fertilizer Use in efficient Global Food Production
Accountability – Education & Training

4. Suitable fire control devices such as hoses and appropriate portable fire extinguishers (AN is an oxidizer and not all fire extinguishers are appropriate) shall be provided throughout the warehouse and loading areas. Water supplies and fire hydrants commensurate with stored quantities should be available.

5. Store AN fertilizer in separate buildings or separated by approved fire walls from organic, combustible, or reactive materials, such as grains, wood or other organic materials, urea and urea compounds, flammable liquids or gases, corrosive acids, chlorates, chromates, nitrates, permanganates or finely divided metals or sulfur.

6. AN fertilizer should NOT be stored in the same building with explosives or blasting agents.

7. Prohibit smoking in AN storage areas.

OSHA Hazard Communication Standards

1. Community Emergency Planning
   - OSHA Hazard Communication Standards require submission of information regarding chemical hazards to their State or Tribal Emergency Response Commission, Local Emergency Planning Commission and local fire departments.
   - Information provided is to include Safety Data Sheets and a Hazardous Chemical Inventory form.
   - Visits to the facility by local fire departments are recommended.

2. Emergency Response Planning Should Include:
   - Coordination with local first responders.
   - Joint training with first responders if possible.
   - Employee training.
   - Community outreach.
   - Analysis of what may be at risk in a serious accident and appropriate planning.
   - Sights that may be at risk in a serious accident and planning.
   - Sights that may be at risk in a serious accident and planning.
   - A site and area evacuation plan.

This document is only a general guideline. For further information:

- Much of this information can be found in Chemical Advisory: Safe Storage, Handling, and Management of Ammonium Nitrate (www.epa.gov/osw/chemicals/doc/chemanv_advisory.pdf).
- OSHA requires emergency response plans, emergency response training, and an OSHA hazardous communication program.
- The National Fire Protection Association (NFPA) has developed a code for storage of AN. Code 490 (available at www.nfpa.org/catalog) applies to the storage of AN, which includes storage in containers, storage in bulk, containers and the protection.
- Pertains to information available as of January 1, 2004. Continue to monitor these sites for further updates.
- Additional information on this topic can be found at www.ansafety.org.
Responsible Leadership for the Future

Assuring Public Safety with our Products
Safe Handling & Product Stewardship

- Seek consensus throughout the industry and government that improves stewardship and supports a more secure traceability process for all products

- Provide a leadership role in the development of proactive safe handling guidelines for products for use by customers throughout the supply chain.

- Support and Promote the implementation of the Responsible Ag Program, improving industry product stewardship accountability and certification throughout the supply chain.
OSHA standards based solely at 60% AN threshold result in a lack of consistency throughout the US and global regulatory community and do not promote a safer product. This should be reviewed.

NFPA should review current guidance around the threshold of 60% AN as basis for AN Storage guidance on all AN based products and recognize the specific safety characteristics of CAN.

Recognize CAN definition as that of any homogeneous product of up to 80 percent AN by weight combining calcium carbonate and/or dolomite, and not more than 0.4% total combustible/organic material calculated as carbon consistent with global standards.

Recognize proven testing standards (UN) as basis for providing consistency and clarity for enforcement and guidance.

Create Clarity & Consistency by providing a special provision for CAN such as DOT has allowed for providing safer products and exempting them from strict regulations. The threshold of 80% AN by weight for use in legislation for CAN is fully justified.

Exempting CAN from the same storage regulations as AN will encourage the use of a safer product.

Goal: Gov’t and Industry collaborate to create a clear path for presenting safe fertilizers
Knowledge grows